
Interactive Television in Brazil: System Software and the Digital Divide

Luiz Fernando Gomes Soares Guido Lemos de Souza Filho
TeleMídia Lab - Catholic Univ. of Rio de Janeiro Federal Univ. of Paraíba

lfgs@inf.puc-rio.br guido@lavid.ufpb.br

Abstract
This paper presents an overview of the new
concepts and characteristics brought out by Ginga,
the standard middleware of the Brazilian digital TV
system.

1. Introduction

Different from common middlewares for terrestrial
digital TV, the standard middleware of the
Brazilian DTV (ISDTV-T), named Ginga, has its
declarative environment based on an XML
application language, named NCL (Nested Context
Language), which focus on how media objects are
structured and related in time and space. As a glue
language, NCL does not restrict or prescribe the
media-object content types , and it can even include
an XHTML-based media object, as defined in other
common DTV standards.

Ginga procedural (Ginga-J) and declarative (Ginga-
NCL) environments also bring novel facilities, as
for example new possibilities for user interactions
and response exhibitions, and new support to
handle unbound applications.

This paper is organized as follows. Section 2
presents the Ginga architecture, leaving for
Sections 3 and 4 an overview of its Ginga-NCL and
Ginga-J modules, respectively. Section 5 discusses
the bridge between these two modules and Section
6 brings the final remarks.

2. Ginga Architecture

This section briefly introduces the Ginga
Architecture.

Ginga applications are classified into two categories
depending upon whether the initial application
content processed is of a declarative or a procedural
nature. These categories of applications are referred
to as declarative and procedural applications,
respectively. Application environments are
similarly classified into two categories depending
upon whether they process declarative or
procedural applications, and are called Ginga-NCL
and Ginga-J, respectively, as shown in Figure 1.

A Ginga application needs not to be purely
declarative or procedural. In particular, declarative
applications often make use of script content, which

is procedural in nature. Furthermore, a declarative
application may reference an embedded Java Xlet.
Similarly, a procedural application may reference
declarative content, such as graphic content, or it
may construct and initiate the presentation of a
declarative content. Therefore, either type of Ginga
application may make use of facilities of both
declarative and procedural application
environments.

Sintonizador

Filtro de Seções

Processador de
Fluxos de Dados

Persistência
Exibidores
de Mídias

(JPEG, MPEG2,
MPEG4, MP3,

TXT, GIF,
HTML-based,

etc)

Player Adapters ’ APIs

XHTML Adapter

PresentationEngine
(NCL Formatter)

Bridge
Lua

Virtual
Machine

Execution
Engine

(Xlet manager)

XHTML Browser
+

CSS
+

ECMAScript

Lua Adapter

Private Base Manager

Ginga - Specific Service
Ginga – Common Core

Operating System
Players’ APIs

XHTML APIs NCL API LUA-NCL
API

JVM

Sintonizador

Filtro de Seções

Processador de
Fluxos de Dados

Persistência
Exibidores
de Mídias

(JPEG, MPEG2,
MPEG4, MP3,

TXT, GIF,
HTML-based,

etc)

Player Adapters ’ APIsPlayer Adapters ’ APIs

XHTML Adapter

PresentationEngine
(NCL Formatter)

BridgeBridge
Lua

Virtual
Machine

Execution
Engine

(Xlet manager)

XHTML Browser
+

CSS
+

ECMAScript

Lua Adapter

Private Base ManagerPrivate Base Manager

Ginga - Specific Service
Ginga – Common Core

Operating System
Players’ APIs

XHTML APIs NCL API LUA-NCL
API

JVM

Figure 1 – Ginga architecture

Ginga-NCL is a logical subsystem of the Ginga
System that processes NCL [Soares, 2006]
documents. Key components of Ginga-NCL are the
declarative content decoding engine (NCL
formatter) and its Private Base Manager module.

The NCL Formatter is in charge of receiving an
NCL document and controlling its presentation,
trying to guarantee that the specified relationships
among media objects are respected. The formatter
deals with NCL documents that are collected inside
a data structure known as private base. Ginga
associates a private base with a TV channel. NCL
documents in a private base can be started, paused,
resumed, stopped, and can reference each other.
The Private Base Manager is in charge of receiving
NCL live editing (see Section 3) commands and
maintaining the active NCL documents.

Other important modules of Ginga-NCL are the
XHTML-based user agent, which includes a
stylesheet (CSS) and ECMAScript interpreter, and
the LUA engine, which is responsible for
interpreting LUA scripts [Soares, 2006]. Depending
on the XHTML implementation, Ginga-NCL can
be compatible with other declarative standards.

Ginga-J is a logical subsystem of the Ginga that
processes active Java based object content. Thus, it
has as a key component the procedural content

execution engine composed by a Java Virtual
Machine.

Ginga-J is GEM (Globally Executable MHP)
[Souza 2006] complaint. GEM defines Core and
Specific APIs (Application Program Interfaces).
Core APIs must be supported by all GEM
conformant middle wares: DVB MHP, ATSC
ACAP and OCAP, ISDB ARIB and ISDTV Ginga.
In order to provide support for Brazilian specific
requirements and to explore opportunities created
by the new convergent digital TV hardware, in
terms of processing power and Home Area
Network interfaces, Ginga specific APIs provide
support for multiuser, multidevice and
multinetwork interactions. Ginga specific APIs also
provide support for unbound applications, which
can be received, saved and, later, accessed and
executed.

Ginga Common Core supports both the Ginga
declarative application environment (Ginga-NCL)
and the Ginga procedural application environment
(Ginga-J). It is composed by common content
decoders (for the decoding and presentation of
common content types such as PNG, JPEG, MPEG
and other formats), and procedures to obtain
contents transported in MPEG-2 Transport Streams
and via the return channel. The DSM-CC is adopted
in Ginga for carrying live editing commands in
MPEG-2 TS elementary streams. DSM -CC stream
events and DSM-CC object carousel protocol are
the basis for application handling in Ginga. The
Ginga Common Core shall also support the
conceptual display graphic model defined by the
Brazilian DTV system.

3. Ginga-NCL

Unlike HTML or XHTML, NCL has a stricter
separation between content and structure and it
provides non-invasive control of presentation
linking and layout. As such, NCL does not define
any media itself. Instead, it defines the glue that
holds media together in multimedia presentations.

NCL document only defines how media objects are
structured and related, in time and space. As a glue
language, it does not restrict or prescribe the media-
object content types. In this sense, we can have
image objects, video objects, audio objects, text
objects, execution objects (e.g, Xlet, LUA, etc.),
etc., as NCL media objects. Which are the media
objects supported depends on the media players that
are embedded in the NCL formatter. In the
Brazilian DTV system, one of these players is the
MPEG-4 decoder/player, implemented in hardware
in the DTV receptor. In this way, note that the main
MPEG-4 video and audio is treated like all other
media objects that can be related using NCL.

Another NCL media object required in ISDTV-T is
the HTML-based media object. Therefore, NCL
does not substitute but embed HTML-based
documents (or objects). As with other media
objects, what HTML-based language will have
support in an NCL formatter is an implementation
choice, and, therefore, will depend on which HTML
browser will act as a media player embedded in the
NCL formatter.

Although an XHTML-based browser must be
supported, the use of XHTML elements to define
relationships (including XHTML links and
ECMAScripts) should be dissuaded when authoring
NCL documents. Structure-based authoring should
be emphasized.

During the exhibition of media-object contents,
several events are generated. Examples of events
are the presentation of marked segments of a
media-object content, the selection of a marked
content segment, etc. Events may generate actions
on other media objects, like to start, pause or stop
their presentations. Hence, events must be reported
by media players to the NCL formatter that, in its
turn, can generate actions to be applied to these or
other players. Ginga-NCL defines an adapter API to
standardize the interface between the Ginga-NCL
formatter and each specific player. Third part
players, including XHTML-based browsers, usually
need an adapter module to realize their integration.

Finally, for live editing, Ginga-NCL has also
defined NCL stream events (DSM-CC events) in
order to support live generated events in stream
media, in particular the main program stream video.
These events are a generalization of the same
concept found in other standards, like for example
the b-events of BML. Again, the use of XHTML
elements to define relationships (stream event
elements in this case) should be dissuaded in
authoring NCL documents, for the same
motivation: structure-based authoring should be
emphasized.

3.1 NCL and SMIL

Nowadays, declarative languages focusing on
synchronization are not common in DTV
middlewares.

SMIL, the W3C standard for synchronization, as
well as NCL define a set of modules to support
temporal synchronization events, including
interactivity as a special case. Both languages also
provide support for content and presentation
alternatives, which are very important to context
(user, device, location, etc.) aware adaptations.
NCL provides, in addition, support for spatial
synchronization; for multiple-device simultaneous

interactions and responses; for variable handling;
and also a very powerful script language, named
Lua (Soares, 2006) that among its facilities can
manipulate the receptor hardware and interact with
the Java environment of Ginga. Only recently
SMIL has announced its draft for a “set-top box
profile”, where some of these issues are addressed.

The ISDB ARIB B-24 considered the use of SMIL
language, but abandoned the idea, because at that
time: “SMIL was quite static representation
scheme. It was ready for pre-programmed timing,
not real-timing. It was inconvenient for live
program”, as they stated. Live program editing and
synchronization are usually accomplished through
DSM-CC stream event handling. Ginga-NCL treats
stream events as real-time editing operations on
NCL documents. Among other advantages the
Ginga-NCL solution preserves the same document
specification both in the authoring environment and
in the receptor.

More recently, a joint work has begun in W3C,
aiming at a middleware implementation that would
allow both NCL and SMIL application support.

4. Ginga-J

Ginga get access to streams of video, audio, data,
and other media assets through the Ginga Common
Core. Ginga can receive input from users via
conventional remote controls or any other
peripheral having a keyboard, a cell phone, etc. In
response to an input, Ginga may present visual
information on the television set itself, on the
screen of other output devices, or even as an audio
output to loudspeakers. A single interaction device
may have both input and output capabilities.
Usually, an interaction coming from these devices
redirects the output answer to themselves. A PDA
is an example of such devices. Many devices may
interact with Ginga at the same time. In this case,
the platform must distinguish the commands sent
by and responses sent to each device.

As aforementioned, Ginga-J is GEM complaint. As
such, it includes the GEM Core APIs and defines
other Specific ones to fulfil the Brazilian particular
requirements. Ginga-J Core APIs are: Sun Java
TVTM API 1.1 (JSR 927); Java Media Framework
Specification (JMF 1.0); Connected Device
Configuration (CDC) 1.1 (JSR 218); Foundation
Profile (FP) 1.1 (JSR 219) and Personal Basis
Profile (PBP) 1.1 (JSR 217); DAVIC API; and
HAVi API.

Ginga-J Specific API set is comp osed by: JMF 2.1.1
(JSR 920), which allows working with the TV set to
input and output media streams; an extension of the
GEM's return channel API, which allows sending

asynchronous messages; and an extension of the
ISDB-ARIB B.23's Service Information API.
Ginga-J Specific APIs set also includes a Multiuser
API, a Device Integration API and a Ginga-NCL
Bridge API. The first one provides support for
multiple simultaneous user interactions with the TV
set; the second supports the integration of devices
like cell phone and PDAs using typical Home Area
Networks technologies (Bluetooth, Wifi, PLC etc.);
finally, the third one provides support for
controlling the presentation of NCL documents
through Java Xlets. A complete specification of
Ginga-J APIs can be found in [Souza, 2006].

5. The Bridge Ginga-NCL ? Ginga-J

The two-way bridge between Ginga-NCL and
Ginga-J is done:

? in one way, through NCL relationships, defined
in NCL <link> elements that refers to <media>
elements representing Xlet (application/x-ginga-
NCLet type) codes supported by Ginga-J; and
through Lua scripts (<media> elements of the
application/x-ginga-NCLua type) referencing
Ginga-J methods;

? in the reverse way, through Ginga-J functions
that can monitor any NCL event and can also
command changes in NCL elements and properties,
through relationships defined in NCL <link>
elements or through NCL live editing commands.

6. Final Remarks

The Brazilian Digital TV System (ISDTV-T) will
start its transmissions in the end of 2007.
Conceived for terrestrial (“free-to-air”) TV, the
system took into account all other DTV system
reference models without neglecting the
topographic, political and social peculiarities of the
country and its people. Moreover, ISDTV-T took
profit of being conceived when emerging
technologies previously unfeasible were available.
ISDTV is a variant of ISDB, and Ginga is the
standard middleware of this new DTV system.

References
Soares, L.F.G. (2006). Standard 06 - ISDTV-T Data
Codification and Transmission Specifications for
Digital Broadcasting, Volume 2 – GINGA-NCL:
Environment for the execution of declarative
applications. São Paulo, SP, Brazil. ISDTV-T
Forum.

Souza, G.L. (2006). Standard 06 - ISDTV-T Data
Codification and Transmission Specifications for
Digital Broadcasting, Volume 4 – GINGA-J:
Environment for the execution of procedural
applications. São Paulo, Brazil. ISDTV-T Forum.

